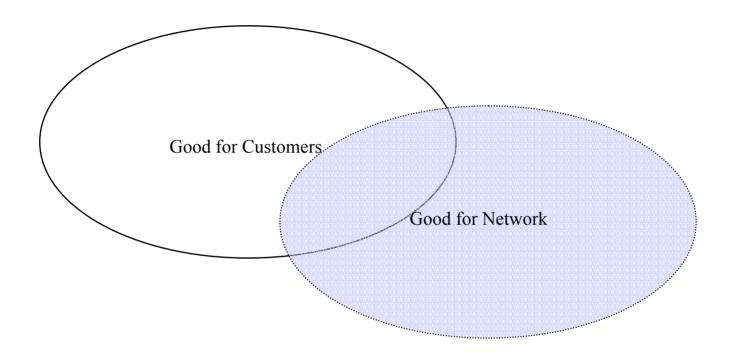
Optimal Portfolio Methodology for Assessing Distributed Energy Resources Benefits for the EnergynetSM


CADER International Symposium January 2004

California Energy Commission PIER Project 500-01-039

Pressing Questions

- What is the potential for Distributed Energy Resources (DER) to enhance performance of the power delivery network?
- Can benefits be reliably measured and valued?
- What are the specific location, size, and operating profile of DER projects that contribute the most to network performance?
- What are the most consequential barriers to these "beneficial" DER projects?
- Can utilities provide incentives for "beneficial" DER projects by sharing value rather than shifting costs?

Why look only at network benefits of DER?

- End-use customers and network operators (utilities) are independent stakeholders with different interests.
- If network (utility) benefits of DER can be quantified and priced, their value can be shared with customers.

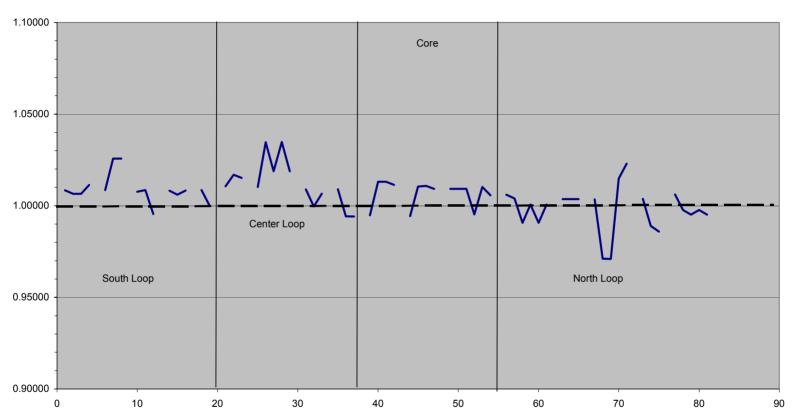
What's Different

- Analyze the power delivery network where DER projects are actually connected
 - with transmission and distribution as an *integrated* power delivery network (Energynet).
- Consider DR and DG and capacitors as available DER options.
- Observe the impacts of DER on a broad set of network performance indicators.
 - Voltage profile improvement
 - Reduced reactive power flows
 - Reduced electrical losses
 - Stability and power quality improvement
 - Avoided or deferred network additions
- Optimal Technologies' AEMPFAST® network optimization software.
 - Direct voltage optimization => precise placement of *hundreds* of real and reactive capacity additions through DER.

Certain features U.S. Pat. Pend.

Integration of Energynet Dataset

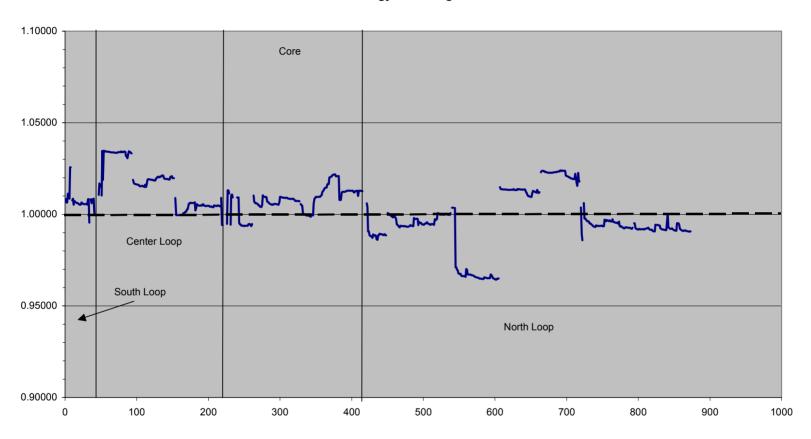
Historical Characterization of SVP:


- WECC: Two 115 kV buses with two generators and SVP load split between them.
- SVP: 80 115 kV and 60 kV buses and with loads on distribution stepdown transformers; generators modeled as negative load

Our Characterization of SVP:

- ~ 850 bus network -- 115 and 60 kV transmission; 12 kV distribution.
- 48 12kV distribution feeders connected by 106 switchable branches.
- 422 load customer-serving buses customer transformers and customers at primary-voltage service.
- 6 generators with variable MW and MVAR capacity
- 101 switchable capacitors.
- Customer loads and generation from actual 2002 SCADA records.
- Fully-integrated into PG&E regional 115 kV and 230 kV transmission and ~13,000 bus WECC west-wide high-voltage transmission system.

Summer Peak 2002 Base Case -- Transmission Only


Summer Peak 2002 Transmission Voltage Profile -- Base Case

- All buses within +/- 5% of rated voltage under Summer Peak conditions- a healthy system.
- Customer-sponsored generation and demand response would not be connected at these buses.
- Distribution-level DER impacts invisible.

Summer Peak 2002 Base Case Results

Summer Peak 2002 Energynet Voltage Profile -- Base Case

- Far more detail.
- Integrating distribution identifies more low-voltage buses and voltage variability.

Improving Delivery Network Performance Using DER

Objective:

 Minimize real power losses and reactive power consumption while eliminating lowvoltage buses and making overall voltage profile "flatter."

Existing Controls:

 Set MVAR output from shunts and MW and MVAR output from existing embedded generation for the best network performance.

Reactive Capacity Additions (MVAR)

Station capacitors and line capacitors in standard sizes.

Demand Response Additions (negative load, or MW + MVAR at load's pf)

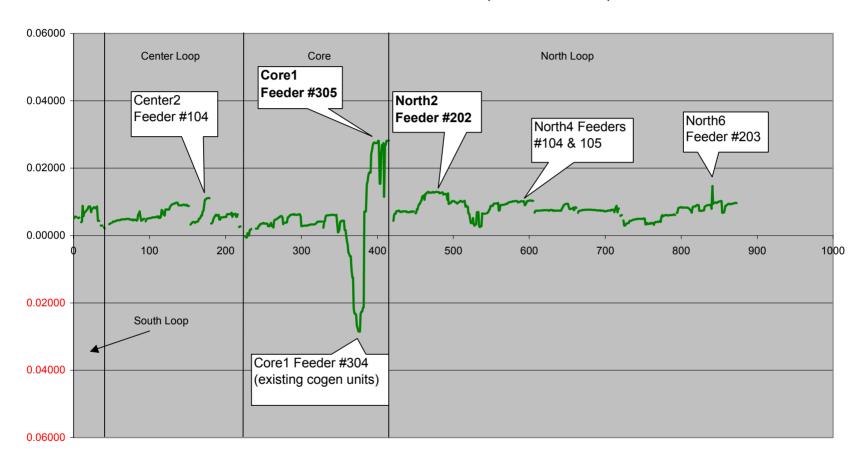
- Limited to 2-15% of customer load depending on customer size and case.

Distributed Generation Additions (MW + MVAR based on synchronous generator pf range)

- Limited to 60% of customer load
- Non-export feeder limits.

Assessing the Base Performance of the Delivery Network

"Hand" Analysis of Power Flow Results:


- Low-voltage buses, sectors with high voltage variability
- High real and reactive power flow
- Real and reactive power flowing in opposing directions.

AEMPFAST Analysis:

- Identifies ideal control variable settings.
- Calculates "indices" for each bus showing buses where real or reactive capacity additions yield the greatest network-wide improvement relative to the objective.

Adding DER Capacity Using AEMPFAST®

Summer Peak 2002 Initial P Indices (Recontrolled Case)

- P Index identifies locations where adding P capacity is the most beneficial for the "objective" of improved network performance.

Summer 2002 Case DER Capacity Additions - DR

- DR capacity addition at 382 locations ranked in terms of network benefit, totaling 13.6 MW.
- Top 20 ranked locations for DR capacity addition:

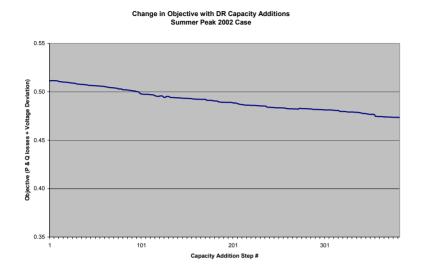
Rank	Bus No.	Load Name	Location		Load (kW)	DR (kW)	DR Share
1	524	35L12K1	Core1	Feeder 305	192	29	15%
2	5163	35LX300	Core1	Feeder 305	14	2	15%
3	8205	35LX500	Core1	Feeder 305	24	4	15%
4	9129	35LX1000	Core1	Feeder 305	48	7	15%
5	8701	35LX1500	Core1	Feeder 305	72	11	15%
6	8923	35LX500	Core1	Feeder 305	24	4	15%
7	8404	35LX500	Core1	Feeder 305	24	4	15%
8	7285	35LX225	Core1	Feeder 305	11	2	15%
9	8661	22AX1500	North2	Feeder 202	372	56	15%
10	5185	22AX1000	North2	Feeder 202	248	37	15%
11	503	22A12K1	North2	Feeder 202	991	149	15%
12	8313	22AX500	North2	Feeder 202	124	19	15%
13	5178	22AX500	North2	Feeder 202	124	19	15%
14	8630	22AX300	North2	Feeder 202	74	11	15%
15	8662	22AX1500	North2	Feeder 202	372	56	15%
16	5225	22AX300	North2	Feeder 202	74	11	15%
17	5028	22AX500	North2	Feeder 202	124	19	15%
18	8271	22AX300	North2	Feeder 202	74	11	15%
19	8314	22AX500	North2	Feeder 202	124	19	15%
20	8690	22AX750	North2	Feeder 202	186	28	15%

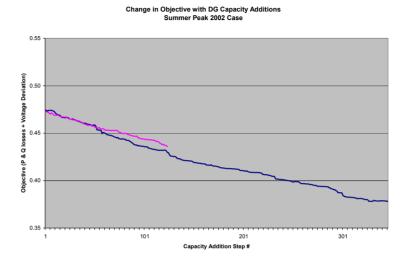
Summer 2002 Case DER Capacity Additions - DR

• Key feeders among top 100-ranked DR capacity additions:

Substation	Feeder	Buses/Projects	Total DR (kW)
North2	Feeder 202	20	673
North4	Feeder 104	19	287
North2	Feeder 203	12	531
North6	Feeder 203	10	452
Core1	Feeder 305	8	61
North4	Feeder 105	6	247
North6	Feeder 205	6	314
Center3	Feeder 303	6	139
North4	Feeder 101	5	159

Summer 2002 Case DER Capacity Additions - DG

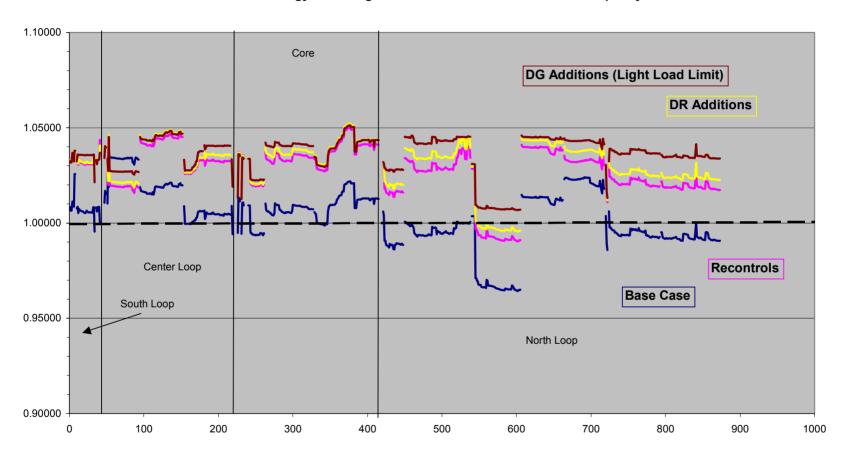

DG Additions:


- Rule 21 non-export feeder limit: 124 locations totaling 13.8 MW.
- "Light Load" non-export feeder limit: 346 locations totaling 38 MW.

Top DG capacity addition locations (light load feeder limit):

Rank	Bus No.	Load Name	Lo	cation	Load kW	DG kW	DG Share
1	524	35L12K1	Core1	Feeder 305	192	98	51%
2	5163	35LX300	Core1	Feeder 305	14	7	50%
3	8205	35LX500	Core1	Feeder 305	24	12	50%
4	9129	35LX1000	Core1	Feeder 305	48	24	50%
5	8701	35LX1500	Core1	Feeder 305	72	37	51%
6	8923	35LX500	Core1	Feeder 305	24	12	50%
7	8404	35LX500	Core1	Feeder 305	24	12	50%
8	7285	35LX225	Core1	Feeder 305	11	6	55%
9	8661	22AX1500	North2	Feeder 202	372	190	51%
10	5185	22AX1000	North2	Feeder 202	248	126	51%
11	503	22A12K1	North2	Feeder 202	991	505	51%
12	8890	22AX2000	North2	Feeder 202	496	248	50%
13	8854	14WX225	Center2	Feeder 104	508	259	51%
14	7606	15TX112	North4	Feeder 105	34	20	59%
15	7645	23CX225	North6	Feeder 203	80	41	51%
16	8228	15TX750	North4	Feeder 105	231	118	51%
17	504	23A12K1	North2	Feeder 203	776	396	51%
18	7654	23CX225	North6	Feeder 203	80	41	51%
19	8527	14TX300	North4	Feeder 104	35	18	51%
20	5176	14TX225	North4	Feeder 104	26	13	50%

Network Improvement from DER Capacity Additions



- Sequential DER capacity additions yield cumulative improvement in network performance, indicated by quantified "objective."
- DR capacity additions reduce losses by about 11% (0.141 MW)
- DG capacity additions reduce losses by about 20% (0.257 MW) under light load feeder limit.

Voltage Profile Effects from DER Capacity Additions

Summer Peak 2002 Energynet Voltage Profile with Recontrols and DER Capacity Additions

Voltage Profile with DER capacity additions –Flatter and Higher.

Combined Impact of DER Capacity Additions

Dispatchable Demand Response

- 382 customer sites totaling 13.6 MW (3.4% of total peak load)
- Limited to 15% of site's peak load under Summer Peak conditions

Onsite Generation

- 346 customer sites totaling 38 MW (9.7% of total peak load).
- Limited to 60% of adjacent load and Light Load "no-export" feeder limit

Network Benefits

- 31% reduction in P losses in SVP (0.398 MW).
- 30% reduction in Q consumption in SVP (15.203 MVAr).
- Losses reduced at 3 x system's average loss rate.
- ~ 5 MW additional reduced losses in surrounding PG&E system.
- Low-voltage buses (< 1.000 PU) eliminated.
- Reduced variability in SVP system voltage profile

What are network benefits of DER worth?

Easily Priced:

- Reduced need for energy to make up for real power losses.
- Reduced need for reactive capacity.
- Increased load-serving capability where network improvements would otherwise be needed.

Important but harder to value:

- Elimination of low-voltage buses or sectors.
- Reduced reactive power flow.
- "Flatter" voltage profile for greater stability.
- More network flexibility, reduced impacts of contingencies.

Conclusions

- DER additions can reduce losses *and* improve voltage profile in an integrated power delivery network.
- These impacts are real and can be quantified and priced.
- Where DER is placed in the network *is* important.
- Most impacts of DER (good and bad) would be invisible in a transmissiononly analysis.
- These methods and tools can identify ways to further optimize even a "healthy" network using DER.

Challenges to Realizing the (Network) Benefits of DER

- Assessing and pricing network benefits of DER -- an important first step.
- 1. Financial incentives for network operators (utilities).
 - Direct financial incentive to improve network performance (e.g. Performance-Based Pricing).
- 2. Financial incentives for network operators (utilities).
 - Equal financial incentive to improve network performance through third-partysponsored nonwires solutions (e.g. DER) as through utility-sponsored capital additions to the network.
- 3. Financial incentives for network operators (utilities).
 - Financial benefit from large-scale deployment of customer-sponsored generation.

Details

500-01-039 Project Participants

- New Power Technologies
- Cupertino Electric, Inc.
- Silicon Valley Power
- Optimal Technologies (USA), Inc.
- Rita Norton & Associates LLC
- Silicon Valley Manufacturing Group
- William M. Stephenson
- Roy C. Skinner
- Linda Kelly (CEC Project Manager)
- Laurie Ten Hope (CEC Program Area Lead)

Technical Advisory Committee

- Dave Hawkins, California ISO
- Marija Ilic, Carnegie Mellon
- Jim Kavicky, Argonne National Lab
- Don Kondoleon/Demy Bucaneg, CEC
- John Monestario, PG&E Distribution Engineering (retired)

About New Power Technologies

- New Power Technologies identifies and develops businesses and technologies enabling an intelligent energy infrastructure.
- Our core belief is that the electric power infrastructure of the future is an EnergynetSM comprised of:
 - Integrated transmission and distribution
 - Embedded (or "distributed") generation with remote generation
 - Loads responsive to network conditions
 - Energy services mass customized to meet customer needs
- Contact Information:
 - Peter Evans 650.948.4546, info@NewPowerTech.com